LRQA

NETTITUDE Tools v Tutorials v Training v Al

LABS 5° Careers Contact Nettitude.com

e

Exploiting a Kernel Paged Pool Buffer

Overflow in Avast Virtualization Driver Q Search.

By Kyriakos Economou | February 17, 2016

CVE-2015-8620

We discovered this vulnerability in the Avast Virtualization driver O

(aswSnx.sys) that handles some of the ‘Sandbox’ and ‘DeepScreen’ Projects
functionality of all the Avast Windows products. We initially found this

issue in versions 10.x (10.4.2233.1305) of those products and later Check out our
confirmed that the latest 11.x versions were still affected by this issue latest projects

up to, and including v11.1.2245. Upon successful exploitation of this at

flaw, a local attacker can elevate privileges from any account type https://github.com/

(guest included) and execute code as SYSTEM, thus completely

compromising the affected host.

Affected Products

e Avast Internet Security v11.1.2245
e Avast Pro Antivirus v11.1.2245

e Avast Premierv11.1.2245

e Avast Free Antivirus v11.1.2245

Earlier versions of the aforementioned products are also affected.
Technical Details

The Avast virtualization kernel mode driver (aswSnx.sys) does not
validate the length of absolute Unicode file paths in some of the IOCTL
requests that receives from userland, which are later copied on fixed
length paged pool memory allocations. This allows exploit code to
overflow the associated kernel pagedpool allocated chunk and corrupt

an adjacent kernel object that the attacker controls (Figure 1).

kd> lpool a8f45816

Pool page a8f45816 region is Paged pool

aBf45000 size: 418 previous size: 0 (Allocated) Dire (Protected) € object controlled by the attacker
a8f45418 size: 3b8 previous size: 418 (Free)

*aBf457d0 size: 418 previous size: 3b8 (Allocated) *SnxN € attacker overflows this chunk

a8f45he8 size: 418 previous size: 418 (Allocated) Dire (Protected) € object controlled by the attacker

Figure 1. Attacker-Controlled Directory Object

In the following figure we can see a call to nt/memmove performed by
the aswSnx.sys driver without validating the size of the data to be
copied against the available size in the allocated pagedpool chunk.
This information was taken from version 10.x, but you can easily locate

the same call in version 11.x of the driver.

8e812e32 ff1554c4878e call dword ptr [aswSnx+0x75454] {ntImemmove (82a8¢300)}
[esp]

as&s b SE9ale € destination in pool. chunk *00c9e128

a785b65c 8547904c € source

a78sbsco I

kd> lpool 90c9el16e

Pool page 90c9el6e region is Paged pool

90c9e000 size: f8 previous size: 0 (Allocated) ObSk

90c9e0f8 size: 30 previous size: f8 (Allocated) CMpb Process: 861e73a0

—previouﬁ size: 30 (Allocated) *SnxN

Figure 2. The Bug!

PopularRecent

PoshC2 - new
features
December 1,2016

'Panda
Security 2016
Home User'
privilege
escalation
April 5,2016

DerbyCon
2018 CTF Write
Up

October 11,2018

X

Nothin
see hel
yet

When they Twe
Tweets will sho'

Exploiting Heap Overflows

As with most cases dealing with dynamic memory allocation based
buffers, also known as heap overflows, we firstly need to be able to
predict where the allocation will occur so that we can take control of
the execution flow as reliably as possible. This is even more important
when we exploit bugs in code running in the kernel address space, as
usually if the exploit fails then the whole system goes down with it.
Corrupting a random kernel object that you don’t control, isindeed a
really bad idea.

In order to achieve this, we need to overcome another challenge which
is to create a desirable layout of dynamic memory allocations based on
the size of the chunk that we can overflow. If we can control the size of
that chunk, then it is easier to achieve this since we don’t have to limit
ourselves to a much smaller subset of objects. However, when we deal
with fixed-size chunks (0x418 bytes in this case) it can be very
challenging to find a suitable object of that size in order to spray the
heap reliably. Finding a kernel object that could fit this requirement
was a bit tricky, but thanks to this article by §00ru’, | managed to get
the one | needed.

Spraying the Kernel Paged Pool

Private Namespaces are indeed a useful way of creating paged pool
objects of which we can control the size and this fact makes them ideal
for exploiting this bug.

By creating multiple private namespaces with boundary descriptor
names that have a well-crafted length, we can achieve the following

memory layout:

kd= Ipool aa3d8030

Pool page aa3d8030 region is Paged pool

_ previous size: 0 (Allocated) *Dire (Protected) € use as a ljf!_fererlce
Pooltag Dire : Directory objects

aa3d8418 size: 3b8 previous size: 418 (Free)

— previous size: 3b8 (Allocated) Dire (Protected) € memory window candidate

_ previous size: 418 (Allocated) Dire (Protected) € object to corrupt candidate

Figure 3. Heap-Spraying

So in this case, we can’t control the size of the paged pool chunk that
we can overflow, but we can control the size of a paged pool object to a

certain extent. What is shown in Figure 3 actually refers to just one

memory page (of size 4kb) in order to demonstrate what the paged
pool starts to look like.

As you can see, we have one object that we control at the beginning of
the memory page, then we have some free space of size 0x3b8 bytes,
and finally two contiguous objects that we control until the end of the
memory page. By crafting boundary descriptor names with variable
length, we can even occupy the entire memory page with objects that

we control:

kd> Ipool ad14a030

Pool page ad14a030 region is Unknown

_ previous size: 0 [Allocated) *Dire (Protected)
Pooltag Dire : Directory objects

_pravious size: 418 (Allocated) Dire (Protected)
_prevmus size: 3b8 (Allocated) Dire (Protected)
_pravious size: 418 (Allocated) Dire (Protected)

Figure 4. Heap-Spraying #2

However, since the buffer that we can overflow is of a fixed-size (0x418
bytes) and we are targeting for corruption the last allocated object in
the memory page, it doesn’t really matter what there is inside the
space at page_allocation_base + 0x418 since the size of this chunk is of
size 0x3b8, which is not of our interest. In other words, we can allow
the kernel to use it at will.

By using Process Explorer from Sysinternals we can have a better view
of how the paged pool memory allocations look like after spraying the
heap, but before punching memory holes to create room for ‘SnxN’

tagged allocations (Figure 5).

=R explorer exe 0.04 35792 K 63,556 K 3356 Windows Explorer Microsoft Comparation
m\rrntoolsd.axe 0.08 7780 K 16,068 K 3516 VMware Tools Core Service . WMware, Inc. =
= 1| GrooveMonitor.exe 1.820 K 6,732 K 3540 GrooveMonitor Liility Microseft Corporation
i AvastUlexs 0.01 20072 K 23828 K 400
=] Avast_AswSri_Hippo exe 38092K 39308K 5484 :
188 taskmar.exe 0.19 1988 K 8,208 K 5516 Windows Task Manager Microsoft Corporation
Qf prOCExD exe 36.38 RIST6 K T4 588 K 5732 Sysintemals Process Bxplorer Sysintemals - www sysinter. .
=
Type Handle Object Address Name

Directory <8704 .
Directory 0:B7ED Pagedpool memory allocations layout
Directory xB7FD .

Directory <878 VISR after heap spraying.

Directory OxE7E4 (xAB517030

Directory IxB7F4 b ABGT 7200

Directory B7EC e ARS1TC1E

Directory 87F8 (<AB618030

Directory [<880C (bcABG12300

Directory 3304 BABE1BCTS

Directary B7FC (ABG19030 Reference Object - Start of memory page.
Directory 8810 G<ABS 13500

Directory 8808 (BABE19C 10 i

Directory 8814 TcABB1B030 I Object to Free - Create memory hole,
Directory (3824 b ARETHEN]

Directory »881C (<AB61BC 15 . . .

Dirsctory et e s Il Object candidate for corruption.

Directory 8828 GABGICE00

Directory <8820 ABGICC1 8|

Figure 5. Pagedpool memory allocations layout -

The following figure shows the layout of a memory page after
successfully spraying the heap and punching memory holes. Our
exploit triggers the bug that allows us to overflow the ‘SnxN’tagged

buffer and corrupt the adjacent object that we control.

Kd> Ipool a8f45816

Pool page a8f45816 region is Paged pool

a8f45000 size: 418 previous size: 0 (Allocated) Dire (Protected)

a8f45418 size: 3b8 previous size: 418 (Free)

RIBESEEAISSARN < exploit overflows this chunk

] < chis object will be corrupted

Figure 6. Heap-Spraying #3

Private namespaces, which are implemented as directory objects, are
not only interesting because of the ability that they give to the attacker
to manipulate the size of the allocated paged pool chunk. They also
allow us to control the execution by overwriting the pointer stored in
the LIST_ENTRY field of the NAMESPACE_DESCRIPTOR structure. This
field links the aforementioned structure into a linked list of all the
private namespaces available in the system.

Assuming that we have successfully managed to corrupt the
LIST_ENTRY field of the NAMESPACE_DESCRIPTOR structure of a specific

private namespace, then upon deletion of this we are able to trigger a

write-what-where condition.

Figure 7. Not-So-Safe Unlinking (Win 7 SP1)

However, this method will not work from Windows 8 and above

because the kernel implements safe unlinking of LIST_ENTRY structures

which mitigates this method of exploitation.

Figure 8. Safe Unlinking (Win 8.1)

I noticed during the process of creating the exploit that it seems to be
possible to take advantage of this bug using the same objects but
without relying on this specific method. That being said, | still decided
to do it that way for the sake of writing a working proof-of-concept
exploit for this vulnerability targeting Windows 7 SP1 x86.

In the following figure, we show a directory object of a private
namespace before and after corruption. Notice that we have

overwritten the LIST_ENTRY field of the NAMESPACE_DESCRIPTOR

structure with a userland address (0x41414141) that we control.

aBf45b78 50 80 45 08 5a 20 4d 08 de @0 57 08 56 08 44 @0 a8fd5b783 €3 A3 93 B3 @3 €3 A3 A3 A3 B3 23 A3 B3 @3 83 B3
28£45088 47 00 46 08 4a 00 54 00 46 00 56 00 59 00 4F 00 9845088 ©3 B3 03 63 03 03 03 03 03 03 03 03 63 03 03 03 ..
a8f45b98 44 80 52 80 S5a 2@ 56 88 43 90 4b 0@ 50 82 da ee a8f45b98 83 83 93 83 83 ©3 @3 83 83 83 @3 3 83 @3 e3 e3 .. .
aBf45baB 49 90 52 0@ 53 @0 44 00 4d @0 48 00 4c 0@ 55 00 a8f45ba8 83 ©3 ©3 83 03 93 03 03 03 03 03 83 03 03 @3 @3 .. —
aBf45bb8 46 90 4d 00 4c 20 43 02 43 90 46 0@ 52 8@ 46 00 aB8f45bb8 83 83 93 @3 83 03 @3 93 03 83 23 23 83 03 @3 a3 5
aBFf45bcB de 20 02 00 00 PO 08 00 02 00 00 00 18 02 00 80 i ... aB8fd5bcB 83 B3 93 AMIVI O3 B3I PI O3 B3 I PRI B3I 03 A3 B3 .. e
a8f45bd3 @1 01 0@ 09 90 00 0@ 01 0P 20 0@ 0@ 02 @0 20 A aBf45bd8 @3 83 03 03 03 83 €3 03 03 03 €2 63 03 83 83 3 .. T
a8fdSbe8 83 @8 83 086 44 69 72 o5 32 90 2O 0@ a8 82 oo oo a8fa5hed @3 83 93 83 @3 ©3 93 83 @83 83 @3 23 83 @3 e3 e3 .. .
aBf45bf8 78 @0 02 08 <O b7 1= 86 02 90 00 00 01 02 0 00 a8f45bf8 93 03 3 03 93 93 @3 03 @3 03 03 63 03 03 @3 @3 .. .
a8f45ce3 00 00 D2 00 83 20 88 828 < b7 le 86 87 2f e8 a4 a8f45¢e8 83 B3 B3 @3 @3 @3 @3 M3 @3 B3 @3 @3 @3 @3 @3 @3 .. .
2Bf45c18 @0 90 00 00 90 90 0@ 0@ 00 00 0 00 60 02 90 80 a8f45c¢18 83 03 93 93 03 @3 03 03 03 83 @3 23 03 03 @3 @3 .. -
aBf45c28 20 00 02 00 00 90 6O 08 0D 90 PO 08 00 A2 00 B0 a3f45c28 83 ©3 03 03 @3 93 ©3 03 93 03 93 83 @3 @3 @3 03 .. &
aBf45¢38 90 A0 08 00 20 20 PO 00 00 A0 PA D8 00 20 00 90 ... a8fd45¢38 83 A3 03 @I B3I E3 A3 A3 @3 A3 I P3I A3 B3 @3 B3 .. -
28445048 00 00 00 00 09 60 B0 00 00 00 0O 0 00 60 09 B0 . a8f45c48 03 03 03 63 03 63 03 03 03 03 03 03 63 03 03 63 ..
a8f45c58 00 90 B2 00 20 20 90 02 0P 00 PO 08 00 80 oo oo a8fa5c58 @3 @3 P3 @3 @3 @3 @3 p3 @3 B3 @3 P3 @3 @3 @3 @3 .. »
aBf45c68 @0 90 00 00 90 90 0@ 08 00 B0 00 00 00 02 PO 80 ... a8f45c68 03 ©3 03 03 @3 @3 03 03 03 03 @3 03 03 03 @3 @3 .. i
aBf45c78 00 90 02 00 20 90 0O 08 0P 90 PA 08 00 A2 00 PO . aBf45c78 3 @3 83 A3 93 B3 @3 A3 @3 B3 93 B3 A3 O3 @3 23 .. i
aBfd5¢B8 90 00 02 00 80 20 PG 00 00 00 PA D8 00 80 0P A0 a8fd45c88 83 A3 3 B3I I O3 A3 A3 B3 B3 23 PR3 A3 03 €3 B3 .. -
aBf45c98 @0 00 02 06 00 00 0@ 00 00 90 09 00 00 00 0 00 ... aBf45c98 83 ©3 03 03 @3 93 @3 03 03 03 03 03 03 @3 @3 @3 .. -
aBfd5caB 00 90 08 00 0P 20 PO 02 0D 80 8@ 0@ Ff ff ff fF ... aBfd5caB 83 B3 83 A3 83 €3 @3 B3 03 83 @3 B3 Ff ff ff ff .. i
a8F45cb8 [E8_5c ¥4 o8] 01 00 00 00 d8 bl f4 a8 <@ 2c f4 o8 .\.. .. @8f45cH8 @1 80 00 00 d8 b0 f4 28 c@ 2c f4 28
a8f45cc8 18 5c 4 a8 28 93 00 00 G0 00 20 0@ 15 @2 e 08 .\..(..... ... @28f45ccB 18 5C f4 a8 28 ©3 00 e W 00 22 8@ 15 08 09 89 .\.. S
aBfd5cd8 @1 00 00 0P 82 20 00 00 28 @2 00 00 00 92 0 PO ... <.... a8f45cd8 81 60 00 02 92 90 00 PG 28 83 20 00 0 00 2 00 .. .
aBf45ce8 @1 00 08 00 fa 92 00 0@ 54 @0 50 0@ 43 @8 51 @0 P.C.Q. aBf45ceS ©1 00 00 90 fa 02 00 00 54 0@ 50 00 43 00 51 00 P.C Q.
aBf4ScfB 57 80 57 00 46 20 48 08 de 00 41 08 46 00 da 80 N.H,FAHANJ F.J. aBf45cf8 57 00 57 02 46 00 48 00 de 00 41 90 46 00 43 20 W.W.F.H.N.A.F.]
28645008 4d 00 49 00 4c 00 51 00 52 00 58 00 4c 00 56 90 M.I.L.Q.R.X.L.V. o8f45008 4d 06 49 09 4c 89 51 B0 52 00 58 00 4c 80 56 80 M.I.L.Q.R.X.L.V.
a8f45d18 4d @@ 55 90 43 2@ 4b 8@ 52 89 55 0@ 42 8@ 4d P8 M.U.C.K.P.U.B.M. a8f45d18 4d 0@ 55 88 43 20 4b 00 50 98 55 2@ 42 00 4d 2¢ M.U.C.K.P.U.B.M.

Figure 9. Directory Object of PrivateNamespace - Before and after

corruption.

Exploitation - Controlling the EIP

After corrupting the directory object (Figure 9), we need to take control
of the execution flow and redirect it to our payload.

We used the write-what-where condition to overwrite a function
pointer in HalDispatchTable, and more specifically the pointer to
hal!HaliQuerySysteminformation function which is stored at
HalDispatchTable+tsizeof(ULONG_PTR). We can then redirect the
execution on our payload by calling ntdll!NtQuerylIntervalProfile from
userland.

The calling function sequence is: ntdll!NtQueryintervalProfile a
nt!NtQueryintervalProfile a nt!KeQueryintervalProfilea call
[nt!HalDispatchTable+sizeof(ULONG_PTR)] (0x41414141).

What we know so far is that we can overwrite an arbitrary pointer in
kernel address space, and control the EIP via this hijack. However, this
is not enough to have a working exploit.

The write-what-where condition is triggered upon unlinking a private

namespace from the list of private namespaces available in the system.
We are expecting this to happen once we try to close the handle, orin
other words free the directory object of a particular private namespace.
According to MSDN we can achieve so by calling
ClosePrivateNamespace. In the aforementioned article j00ru’ suggests
to call CloseHandle in order to achieve this.

After examining how ClosePrivateNamespace behaves in userland, |
noticed that it is basically a combination of calling the undocumented
ZwDeletePrivateNameSpace and ZwClose (CloseHandle in userland)
kernel functions in this order. So basically, the kernel first unlinks the
private namespace, then destroys the directory object that is ‘hosting’
it. Thisis actually a very interesting detail because it can help us to
build a more stable exploit.

Remember, that at the moment of unlinking the private namespace in
order to trigger the write-what-where condition the directory object
and its pool chunk header have been corrupted due to the heap
overflow. This means that by starting to free directory objects until we
meet the corrupted one and proceed with the exploit the following
situation might occur. If we free an object of which the pool chunk
allocation header references the previous (corrupted) object, we are
going to get a BSoD screen. This is because the kernel compares the
actual size of the previous object (stored in the corrupted pool chunk
header) with the size value stored in the object that we currently trying
to free.

Furthermore, we don’t want to free our corrupted object before our
payload has been executed and we have successfully fixed it, otherwise
the host will go down again because of these kernel security related
checks.

We can avoid this situation by separating these two stages. Indeed, we
can first trigger the what-where condition just by calling
ZwDeletePrivateNameSpace for all the potentially corrupted objects.
This will trigger the unlinking of the private namespace that we are
targeting, but doesn’t destroy the directory object itself. The kernel will
also overwrite the LIST_ENTRY field of the NAMESPACE_DESCRIPTOR
with a NULL pointer in order to indicate that this namespace has been
unlinked already, but we can restore this later during the post-

exploitation clean-up stage.

Finally, in our payload we can safely fix the corrupted directory object
and the associated NAMESPACE _DESCRIPTOR structure so that the
private namespace can be finally correctly unlinked upon terminating
the exploit process.

Vendor’s Fix
.text:0001BE3B

.text:08081BE3E loc_1BE3E: ; CODE XREF: sub_1BD42+EETj
.text:8001BE3B push ebx

.text:B08B1BE3C lea eax, [ebp+var_C]
.text:BOB1BE3F push eax

-text:00B1BE4A push [ebp+arg_%]
-text:B001BEA3 call FltGetUolumeName
-text:0001BE4S cmp eax, ebx

.text:B081BE4A moy [ebp+arg_8], eax
-text:Q8081BE4D j1 short loc_1BESS
-text:B0881BEY4F MovzZx eax, word ptr [ebp+uar_1C]
.text:Q8081BES3 moy ecx, [esi+h]
-text:B80B1BESG push eax

-text:B08B1BEST movzx eax, word ptr [ebp+var_C]
.text:B081BESE push [ebp+uar_ 18]
-text:8081BESE shr eax, 1

-text:B0B1BEAA lea eax, [ecx+eax=2]
-text:00B1BEA3 push eax

-text:BBB1BEAYL call ds:__imp_memmove
-text:B001BEAGA mouzx eax, word ptr [ebp+var C]
-text:B001BEGE push eax

-text:B0B1BEGF push [ebp+uar_8]
-text:0001BE72 push duord ptr [esi+h]
-text:B001BEYS call memcpy

-text:B081BE7A mou eax, [ebp+var_1C]
-text:8081BE7D mou ecy, [ebp+var C]
-text:BBB1BERA add esp, 18h

.text:8061BEB3 add eax, ecx

.text:9801BERS moy [esi], ax

.text:0801BERE

.text:0001BE8E loc_1BEBS: ; CODE XREF: sub_1BD42+10BTj
.text:00801BERE push edi

.text:B001BER? push [ebp+var_8]
-text:8081BESC call ds :ExFreePoolWithTag

Figure 10. Vulnerable Function

.text:80081BE2C loc_1BE2C: ; CODE XREF: sub_1BD34+F1Tj
-text:BOB1BEZC push a8

.text:BOB1BEZE lea eax, [ebp+var_8]
-text:8881BE31 push eax

-text:88B1BE32 push [ebp+arg_8]

-text:B001BE3S call FltGetUolumeName
.text:B061BE3A moy edi, eax

.text:A861BE3C test edi, edi

.text:BBB1BE3E j1 short loc_1BE9?8
.text:B0B1BEL4D movzx eax, word ptr [ebp+var_18]
-text:88B1BELY mouzx ecx, word ptr [ebp+uar_8]
-text:8001BELE add Bax, ecx

-text:BOB1BELA push eax

-text:9001BE4B push esi

-text:8001BELC call sub_C161C

.text:0001BES1 nov edi, eax

-text:8001BES3 test edi, edi

-text:0001BELS j1 short loc_41BE?8
-text:00B1BES7 mouzx eax, word ptr [ebp+uar_18]
-text:BOB1BESBE moy ecx, [esi+i]
-text:BBB1BESE push eax

.text:BAB1BESF movzZx eax, word ptr [ebp+var_8]
-text:B801BEG3 push [ebp+var_ (]

.text:B8001BEGH shr eax, 1

-text:0BB1BEGB lea eax, [ecx+eaxx?]
.text:BOB1BEGE push eax

-text:BOB1BEGC call ds:__imp_memmoue
.text:BBB1BE?2 movzx eax, word ptr [ebp+var_8]
-text:BBB1BE76 push eax

-text:BBB1BE?7 push [ebp+uar_ 4]

-text:08B1BE7A push dword ptr [esi+h]
-text:BOB1BE?D call mencpuy

-text:BOB1BER2 moy eax, [ebp+var_18]
.text:BOB1BESRS moy ecx, [ebp+var_ 8]
-text:0001BEBSE add esp, 18h

.text:B8001BEBB add eax, ecx

.text:9BE1BERD moy [esi], ax

-text:00081BE?O

.text:00081BEYO loc_1BE?8: ; CODE XREF: sub_1BD34+10ATj
-text:00081BEY0 ; sub_1BD34+121Tj
.text:BBB1BE?H push ebx

-text:8801BE?1 push [ebp+var_4]

-text:88B1BEYL call ds:ExFreePoolWithTag

Figure 11. Fixed Function

Did you spot the difference? If not, don’t worry. Indeed it is not very
clear, but if you look closely you will notice an added call sub_C161C
instruction which basically calls a subroutine that is not visible here. Its
purpose is to verify that the size of the supplied data fits the fixed-size
‘SnxN’ tagged allocation. If it doesn’t, then the driver calls
ExAllocatePoolWithTag in order to allocate a new paged pool chunk
where the data can be safely copied.

As a final note, it is very important to mention that the allocation of the
‘SnxN’ tagged buffers is not directly controlled by us. In a common
scenario the memory allocation that we overflow in kernel address
space occurs during the IOCTL request. However, this is not the case
and we will leave it as an exercise to the reader to find a way to control

this exploitation stage.

Demonstration Video

To contact Nettitude’s editor, please email media@nettitude.com.

