NeTIriIruDe
Blog Tools v Tutorials v Training v
l [Careers Contact Nettitude.com

AN LRQA COMPAN

CVE-2018-12750: Symantec Endpoint Protection
Local Privilege Escalation — Part 1

By Kyriakos Economou | December 3, 2019

A malicious application can take advantage of a vulnerability in
Symantec Endpoint Protection to leak privileged information
and/or execute code with higher privileges, thus taking full

control over the affected host.

CVE-2019-12750: Symantec Endpoint Protection Local

Products Affected

* Symantec Endpoint Protection v14.x <v14.2 (RU1)

» Symantec Endpoint Protection v12.x < 12.1 (RU6 MP10)

e Symantec Endpoint Protection Small Business Edition
v12.x < 12.1 (RU6 MP10c)

Introduction: Vulnerability Analysis — Methodology

A few months ago, while looking for a local privilege escalation
vulnerability in the latest version of Symantec Endpoint
Protection (SEP v14.2 Build 2486) software, we encountered a

vulnerability that was hidden for several years.

In addition, the latest security updates around the kernel pool
allocations that were introduced in Windows 10 v1809 gave us
the opportunity to implement a different approach in order to
successfully exploit this vulnerability in the latest version

currently available; v19009.

Since the two approaches we used are quite different between

them, we decided to split this write-up into two parts.

In the first part, we will be discussing the actual bug and how we
took advantage of it in earlier Windows versions, Windows 7 to
10 v1803, without additional kernel mode execution control

requirements.

In the second part, we will go through a more sophisticated
approach that required further analysis of the vulnerable
products due to the newly introduced Low Fragmentation Heap
(LFH) for kernel mode pool allocations, in Windows 10 v1809
onwards, which broke the first exploitation method. This was
necessary in order to obtain code execution in kernel mode while
bypassing additional exploitation mitigations such as SMEP and

KASLR.

Symantec Endpoint Protection — Vulnerability
Analysis

When a new process is created, SEP injects a DLL module
named ‘sysfer.dll’ that makes a series of input-output control
(IOCTL) requests once it's loaded. In this case we are interested

at IOCTL 0x222014 that is sent to the ‘SysPlant.sys’ kernel driver.

During the handling of this request, a programming mistake
allows a malicious attacker to leak and corrupt kernel mode
data. In particular, by examining one of the subroutines that are
executed during this IOCTL request, we see that the following

steps take place:

1. Call ExAllocatePool to allocate a buffer of 0x14 bytes in
size in Paged Pool.

2. Call IoAllocateMd| to allocate a memory descriptor list for
that buffer.

3. Call MmProbeAndLockPages to probe and lock the
associated pages in memory.

4. Call MmMapLockedPagesSpecifyCache to map those

pages into another virtual address range (Figure 1).

loc_FFFFFBBGE13AGALS: v DATE EF
mov réd, 1 ; CacheType

mov rcx, rsi ; MemoryDescriptorlist
movzx edx, r8b ; Accessiode

test rlad, risd

jz short loc FFFFFBBGEL3AGAGS

mov rl4d, edi

mov [rsp+58h+var 28], edi

mov eax, cs:dword FFFFFBBGE13CD340

or eax, 1eh

mov [rsp+58h+Priority], eax ; Priority

mov [rsp+58h+BugCheckOnFailure], edi ; BugCheckOnFailure
xor rod, rod 3 BaseAddress

call cs:MmMapLlockedPagesSpecifyCache

Figure 1 — Mapping Paged Pool Chunk in User Mode

The last one of the steps described above maps that pool chunk
in user mode in the context of the calling process. However,
when a buffer is mapped the entire memory page where the

buffer range applies is also mapped.

In this case, the buffer allocates a very small chunk that
occupies in total 0x30 bytes (buffer size + pool header +
alignment padding). This means that by mapping this pool chunk
in user mode, we also leak the rest of the memory page. That is
basically 0xFDO (4048) bytes of additional kernel memory that

may contain other privileged information.

Unfortunately that is not all. By default the memory page is
mapped as writable, which also enables a user mode process to
modify its contents. Any modification applied to the userland
mapped memory page, will be reflected to original kernel mode

memory page.

In order to mitigate the information leakage, the driver should
allocate a kernel mode buffer that is of size multiple to the size
of the memory page used by the system — usually 4KBs. This
buffer must be sanitized (filled with zeros) before any mapping

occurs.

As a side note, the kernel mode buffer should not be freed while
it's still mapped in user address space. Otherwise, any new data

written to that buffer will also be leaked in userland.

As for the fact that the mapping of the kernel mode buffer
should also be read-only, from Windows 8 onwards, the
MdIMappingNoWrite flag can be used when calling the
MmMapLockedPagesSpecifyCache function.

The first parameter passed to
MmMapLockedPagesSpecifyCache is a pointer to an MDL
structure that was allocated in the second step, as described

above.

kd> dt nt!_MDL @rcx

+0x000 Next : (null)
+0x008 size : 0On5a6
+0x00a MmdlFlags : Onl38
+0x00c AllocationProcessorNumber : 1

+0x00e Reserved 0
Process D (null)
Mappedsystemva : Oxffffbh981l eebclD08 void
startva : FEFEL80 30573000 void
ByteCount

+0x02c Byteoffset

Figure 2 - MDL Structure

We are interested in the three highlighted members of this

structure:

o StartVa — The starting address of the memory page
e ByteCount - Size of the buffer described by the MDL
e ByteOffset — Starting Offset of the buffer inside the

memory page

The intention of the developer was to map that small buffer of
0x14 bytes of size into the user mode address space of the
calling process. However, the system maps the entire memory
page and not just the desired pool chunk, as showing below
(Figures 3, 4).

Virtual: [FFFT8180305736a0 | [Previous || Display format:
ffffe180 3 03 af. 6.9 df_d0 ¢ b3 2None. ~
A G

frffe180’
ffffB8180°
fFffe180°
fFffB180°
ffffB8180°
frffe180’
ffffB8180°
frffe180’
ffff8180°
ffffB8180°
frffe180’
fFFf8180°
fFffe180°
ffff8180°
ffffB8180°
frffe180’
fFff8180°
frffe180°
ffffB180°
fFFf8180°
frffe1en’
ffff8180°
frffe1e0’
ffffe180’
ffffeiso’
frffe180’
ffffe180° 3 74 66 4 9 77 56 i £
frffe180” 73860 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00_. i

PO m

Figure 3 — Kernel Mode Buffer

Virtual: |22c65d706a0 Mesxt Display format: | ByTe | || Previous

0000022c’
0000022

Figure 4 — User Mode Mapped Buffer

This was a good finding in the first place, but we wanted to do
something more with it, rather than just disclosing paged pool

memory in userland.

Note that this works only once per process during the modules
loading stage. So, we can't re-use the same IOCTL multiple times
from the same process to map additional kernel memory pages

in userland.

On the other side, since kernel objects are being allocated and
freed all the time, the contents of the mapped page associated

to those will be constantly changing. However, by re-using the

same IOCTL from our own function, once our process has been
initialized, we can find the userland address where that chunk is

mapped.

By knowing that, we can also find the base address in userland
of that specific page by masking the last two bytes (VA &
OxFFFFF000), assuming page allocation granularity is 4KBs.

Once we have that information, we can parse the mapped page
to find information and interesting objects that we can use to

exploit this further.

Exploitation (Win 7 = Win 10 v1803)

In the first part of the exploitation write-up we will focus on
Windows versions prior to Win 10 v1809. This will also help us
appreciate during the second part, how LFH applied for kernel
pool allocations affected our exploit in the latest Win 10

versions. So for this part, we will focus on Win 10 v1803.

Since we can only leak only one paged pool memory page per
process, and different processes might as well leak the same
page (if there are free chunks were more than one of 0x30 bytes

chucks can fit), we started by launching a bunch of processes.

Each process uses the aforementioned IOCTL to get the base
address of the mapped page in userland and save that datain a

file for further investigation.

After creating a few processes, ‘magic’ started to happen.

00 00 00 00 00 00 00 o0 L.i EEEeL.......
78 00 00 00 00 00 00 00jeu'Eauennn.
00 00 00 00 00 00 00 00 B.f..8¥9........
0108 68 00/ 060000/ 00" wwoveewieererins
30 00 08 02 00 00 00 00 O s
2D 28 26 SD 09 83 FF FF @.f..e¥¥-(&].7¥¥
E4 05 04 00 00 00 00 00 [HOSESE .&.......

SB 06 04 00 00 00 00 00 “P...... _—
EF FF FF FF FF FF FF 7F TYVVVEY.
F5 06 04 00 00 00 00 00 OmO&.Ey¥d.......
Jl TSSOy, B s
cooooazo [0S 50, 00 fl 0o 0o oo 00 0B 00 00 00 ..€.....covvvuns
0OOOOA30 00 00 00 00 00 0006 0000 0800 00 00 wuwpwwmemssss
00000R40 00 00 00 00 00 00 Ol 00 O1 00 00 00 0D 00 00 00 ..uuuunrnnnsssss
OO0OOASO 00 00 00 00 9C 01 00 00 00 10 00 00 00 00 00 00 ...uffe..eun.s...
0000OAGD 00 00 00 00 00 00 00 00 &0 CE E0 SE 09 83 FF FF “ian.rey
OOOOOATO 00 00 00 0O 00 OO0 00 00 BO 61 D5 SE 09 83 FF FF *al" . Fiy
OOOOOAS0 BO 61 D5 SE 09 83 FF FF CC 61 D5 SE 08 83 FF FF “al~.syvial~.fyv
O00OOASO 02 00 00 00 02 00 00 00 00 22 00 00 00 00 00 00 M
0OOQORAC OC 00 00 00 03 00 00 00 10 96 AZ S5E 08 83 FF FF —¢~ L F YT
00000RBO E7 03 00 00 00 00 00 00 OD 00 00 00 00 00 00 00 Guuvennrnnnsssss
OOOOCACO 60 CE EO SE 09 83 FF FF 04 14 00 00 00 00 00 00 ~Ia~.f¢v........
O00OOADO 2R 01 OO0 00 00 OO0 00 00 00 00 00 00 00 00 00 00 *....c..ieuusn...
OOOQOAED 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 ..uuuunrnnnsssss
[Token Object Pool Tag Token Privileges Enabled
Token Source Name Token Privileges EnabledByDefault

-] Token Privileges Present

Figure 5 — Leaked Token Object

We noticed that occasionally, we were able to leak Token
Objects, a well-known target for kernel LPE exploits. Yes, these

are paged-pool objects, and now we own them.

Note that, the leaked memory pages do not necessarily contain
object allocations associated with the calling process. In fact,

usually there won't be any.

These are mainly random pages that are leaked when the
aforementioned IOCTL request takes place, and the 0x30 bytes
chunk is fitted wherever there is available space in paged kernel
pool. That being said, the leaked Token Object does not
necessarily belong to the calling process, and in fact usually it

will not.

However, since we know that this interesting object type can be
occasionally find itself inside a leaked page pool memory page,

we need to find a way to take advantage of this situation.

Token Object Playground — First Method

Since every process has its own Token Object, we can start

creating many processes which every time would be putin a

‘wait’ state. We need this to ensure that the associated token

objects do not get freed.

In a few words, every child process will examine the leaked
kernel memory page that is mapped in its address space and
look for a leaked Token Object. Whatever the result is, the

process will just wait afterwards indefinitely.

The more processes being created, the more Token Objects we
will have allocated, and so eventually we will start leaking those

in a writable usermode-mapped kernel page.

At this point we don't know to which process each object
belongs, and so we must keep a list of the process handles.
Once the child process creation has finished, we can examine
their tokens to find one where we have modified its original

privileges and execute code in its own context.

This method works, but it can get better which brings us to the

next one.

Token Object Playground — Second Method

Since our first objective is to leak as many Token Objects as
possible, it makes sense that the more of these are allocated,
the greater the chances are that an allocated 0x30 bytes chunk

will find itself in the same memory page.

We can achieve this by using the DuplicateTokenEx function to
create clones of the primary token of our exploit process. This
function also allows us to specify that each clone will be a
primary token which we can later use through the
CreateProcessAsUser function. Alternatively, we can use the
ImpersonateLoggedOnUser function to allow the calling thread

of our exploit to use the elevated token privileges directly.

Once we have created a few thousand clones of our primary

token, we can then fall back to the first method described above.

Again, we start creating child processes where each of these will
examine the leaked kernel page mapped in its own address

space and search for Token Objects to modify (see Figure 5).

Finally, we can go through our token clones list and use
GetTokenlInformation with the TokenPrivileges
TOKEN_INFORMATION_CLASS and search for an instance that
has privileges that only an elevated process can have, such as
the “SeDebugPrivilege”. Last but not least, we use the modified
token with CreateProcessAsUser function to start a new process
with elevated privileges, or through the
ImpersonateLoggedOnUser function to elevate the privileges of

the calling thread.

Summarizing the steps

1. Create a few thousand of Primary Token clones

2. Start self-examining child processes that search and
modify leaked Token Objects

3. Parse our Primary Token clones list to find one that was
modified

4. Use CreateProcessAsUser or ImpersonateLoggedOnUser
functions to execute code with higher privileges

5. Inject and execute code in a process running as SYSTEM

Conclusion

This finding is an example of how a simple programming
mistake can turn into a serious vulnerability. The developer
needed to map in the calling process a small chunk of data
without considering all the details of the documentation and

their possible security implications.

In the second part of exploiting this vulnerability, we will focus on
the latest Windows 10 v1909 and see how kernel pool LFH
addition forced to us to look for other ways for exploiting this.

Stay tuned.

Timeline

1. Date of discovery: April 2019

2. Vendor informed: 18 April 2019

3. Vendor Acknowledged: 19 April 2019

4. Vendor Requested Extra Time: 19 April 2019
5. Advisory: 31 July 2019

6. Nettitude blog: 5 December 2019

