
The A.R.F Project v1.1 1

 TThhee AA..RR..FF PPrroojjeecctt

 Anti-Reversing Framework v1.1

Author: Economou Kyriakos

Contact: arfproject@hotmail.com

Programming Language: C++

Compatibility: Win XP SP1 or above

IDE plug ‘n compile: MS Visual Studio (tested with 2008/2010
 editions), Embarcadero C++ builder
 (tested with 2010 edition).

Release Date: 17d/01m/2011

 IInnttrroo

After having dedicated some years in breaking software protections I have arrived to
some conclusions regarding how things work among software developing companies
regarding this matter.
A company that produces any type of software has always in mind the quality of the
final product to be released. This means that its coders dedicate all of their time in
developing the software that is going to be released by searching for bugs and errors
and by improving the code of the software.
However, when all this has come into an end, and it is time to release the software, all
companies have to, or at least they should, deal with another big decision which is of
course the “how” their product it is going to be protected by crackers.
For the big companies that have more money than time in their hands it is more easy
to decide because their budget can afford any type of commercial protections and it is
only a matter of taste regarding the quality of the protection that it is going to be
chosen.
However, even if these companies are able to choose among a variety of protections,
the impact of this decision can be destructive in zero time. Commercial protectors
offer much more quality than the free of the kind but they have a major flaw.
This flaw relies on the fact that before a company applies a well known commercial
protector, others have already done it which means that probably it has been already
reversed. So why should you spend money for a protection that you know that it has
been already cracked?!?

The A.R.F Project v1.1 2

From the other hand, crackers have usually much more time than money in their
hands and this is what makes them dangerous. They will usually try to break the
protection by themselves or read a tutorial about it and use it as a guide. In any case it
is just a matter of time before they say “Game Over!”
So then, why companies do not create their own custom protections?
The answer is simple, it requires time, money and people who know the basics of
reverse engineering, in other words how a cracker would attack the protection of the
software. All this would normally require a separate department of employees
dedicated to the development of the protection itself, but companies don’t seem to
approve this idea and you know the results.
But crackers, won’t they crack that protection too?
The answer is “Yes!” but as we have already said the entire game goes around a more
specific and relative concept which is the “time”. A custom protection must be
analyzed each time from scratch and if it is well developed it could take to crackers
much more time than you may think, so the company will have the opportunity to
gain time and money before the game arrives into an end.
So what if a company wants to use a commercial protector?
Even if they have the flaw that we discussed before, many commercial protectors are
very good and can keep a big amount of crackers especially newbies away. But even
in this case, why you should rely just to the protector itself?!?
Well, you shouldn’t and here it is where the A.R.F Project comes into the game. You
could use it in order to add an extra layer of protection inside the code of your
application itself that will protect your software when the protector will not.
Furthermore, it can be a good solution for single developers and companies that may
not afford neither in terms of money the use of a commercial protector nor in terms of
time the development of a custom protection from scratch.
The A.R.F Project is Free and comes with full source code and documentation of
the available anti-reversing methods.
This gives also the possibility to the developers to modify these methods at will,
combine them together and even more get inspired to create something better in less
time than ever before.
In addition, through the A.R.F Project you can understand how some of the most
famous anti-reversing tricks work and learn how an attacker would attempt to bypass
them, which will help you create your own custom software protection.
The available methods will constantly be updated and more methods are going to be
added in the days to come.

The A.R.F project offers plug ‘n compile compatibility with MS Visual Studio
(tested with 2008/2010 edition) and Embarcadero C++ Builder (tested with 2010
edition).

Greetings: This project is dedicated to all the people that I really respect for their
devotion to their passions without thinking about the consequences.

A big salute to my friends Yiannis, Alexandros, Panos, Kyprianos and Anna.

Enjoy,
Economou Kyriakos

The A.R.F Project v1.1 3

 AAvvaaiillaabbllee CCllaasssseess && MMeetthhooddss

TThhee llaayyoouutt iiss::
§§ CCllaassss

 ii)) mmeetthhoodd

§ DirectDebuggerDetection

 i) bool DebuggerPresent()

 ii) int RemoteDebuggerPresent()

§ IndirectDebuggerDetection

 i) bool DebugString()

ii) int OpenServicesProcess()

§ WindowDebuggerDetection

 i) bool SpecificWindowNameDetection(string
 windowname)

 ii) bool SpecificWindowClassDetection(string classname)

 iii) void SetListSize()

 iv) int GetListSize()

The A.R.F Project v1.1 4

 v) bool ListWindowClassDetection(string * arraymemlocation , int
 listsize)

§ ProcessDebuggerDetection

 i) string * SetProcessList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ProcessDetection(string * arraymemlocation , int
 listsize)

§ ModuleDebuggerDetection

 i) string * SetModulesList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ModuleDetection(string * arraymemlocation, int listsize)

§ ParentProcessDetection

 i) int CheckParentProcess()

§ CodeTraceTimeDetection

 i) DWORD StartExecutionTime()

The A.R.F Project v1.1 5

 ii) DWORD EndExecutionTime()

 iii) DWORD GetTimeLimit()

 iv) DWORD GetTotalTime()

 v) void SetStartTime()

 vi) void SetEndTime()

 vii) void SetTimeLimit()

 viii) void SetTotalTime()

 ix) bool IsCodeBeingTaced()

§ HardwareBreakPointDetection

 i) int HwdBreakPoint()

§ ApiBreakPointDetection

 i) int ApiBreakPoint(char * DLL, char * API)

§ SehDbgDetection

i) bool CloseHandleExcepDetection(HANDLE invalid)

ii) bool SingleStepExcepDetection()

§ AntiAttach

 i) int AntiAttachSet()

 ii) void AntiAttachSelfDebug()

The A.R.F Project v1.1 6

 MMeetthhooddss DDooccuummeennttaattiioonn

CCllaassss:: DDiirreeccttDDeebbuuggggeerrDDeetteeccttiioonn

 11.. DirectDebuggerDetection()

 This method is the constructor used in order to create a new instance of the class.

22.. bool DebuggerPresent()

This method uses the win API IsDebuggerPresent in order to directly detect if the
process is being debugged.

This method returns true if a debugger has been detected, otherwise it returns false.

 33.. int RemoteDebuggerPresent()

This method uses the win API CheckRemoteDebuggerPresent in order to directly
detect if the process is being debugged.

This method returns 1 if a debugger has been detected, 0 if a debugger has not been
detected, -1 if an error occurs while trying to obtain a valid handle to our process with
the necessary access rights, and -2 if the win API fails.

Note: Both methods will trigger a “false alarm” while you debug the
code in your IDE.

The A.R.F Project v1.1 7

CCllaassss:: IInnddiirreeccttDDeebbuuggggeerrDDeetteeccttiioonn

11.. IndirectDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool DebugString()

This method uses the win API OutputDebugString in order to indirectly detect if the
process is being debugged. If a debugger is not attached then the return value will be
0 or 1 depending on the windows version. By retrieving the return value from EAX
immediately after the execution goes back to our code we can determine if the process
is being debugged.

This method returns true if a debugger has been detected, otherwise returns false.

Note: This method will trigger a “false alarm” while you debug the code
in your IDE.

33.. int OpenServicesProcess()

Our process normally does not have the SeDebugPrivilege enabled, which means that
we are not able to obtain a valid handle through OpenProcess win API to a vital
system process such as “services.exe” with process_all_access rights.

In case a debugger is attached to our process *and* has enabled the
SeDebugPrivilege we will manage to obtain such a handle so we can presume that
our process is being debugged.

This method returns 1 if a debugger has been detected, 0 if a debugger has not been
detected, -1 if we failed to obtain a snapshot of all running processes, and -2 if we
failed to retrieve info regarding the first running process.

Note: This detection method should not be used in case that you have
programmatically enabled the SeDebugPrivilege for the needs of your
application.
The debugger of your IDE may also enable the SeDebugPrivilege to the process,
which means that in that case this method will trigger a “false alarm” while you
debug your code.

The A.R.F Project v1.1 8

CCllaassss:: WWiinnddoowwDDeebbuuggggeerrDDeetteeccttiioonn

11.. WindowDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool SpecificWindowNameDetection(string windowname)

This method can be used in order to detect the window of a debugger or a specific
reversing tool through its title name. This it is achieved by trying to obtain a valid
handle to its top-level window by using the win API FindWindow.

33.. bool SpecificWindowClassDetection(string classname)

This method can be used in order to detect the window of a debugger or a specific
reversing tool through its class name. This it is achieved by trying to obtain a valid
handle to its top-level window by using the win API FindWindow.

Both methods will return true if the desired window has been detected, otherwise
they will return false.

44.. string * SetReverseToolsList()

This method will fill a dynamic array with a predefined list of some popular window
class names of debuggers and reversing tools and it will return a pointer to it.

It is the first parameter of ListWindowClassDetection method.

You may modify the list, but in case you do so, you must set the correct size in the
SetListSize method.

55.. void SetListSize()

This method sets the size of the list and it is used by GetListSize() method.

The A.R.F Project v1.1 9

You should modify the size only in case that you have modified the size of the list
inside the SetReverseToolsList() method itself.
For example, in case that you have deleted or added one or more class names of
windows that you want to be detected through the ListWindowClassDetection
method.

66.. int GetListSize()

This method will use the SetListSize method and it will return the size of the list.

It is used as the second parameter of ListWindowClassDetection method.

77.. bool ListWindowClassDetection(string * arraymemlocation , int
listsize)

This method is used in order to check through a list of popular windows class names
of debuggers and reversing tools if any of them is running.

Check methods above regarding the predefined list.

This method will return true if a debugger or a reversing tool from the predefined list
gets detected by its top-level window class name, otherwise it will return false.

CCllaassss:: PPrroocceessssDDeebbuuggggeerrDDeetteeccttiioonn

11.. ProcessDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

22.. string * SetProcessList()

This method will fill a dynamic array with a predefined list of some popular process
names of debuggers and reversing tools and it will return a pointer to it.

The A.R.F Project v1.1 10

It is the first parameter of ProcessDetection method.

You may modify the list, but in case you do so, you must set the correct size in the
SetListSize method.

33.. void SetListSize()

This method sets the size of the list and it is used by GetListSize() method.

You should modify the size only in case that you have modified the size of the list
inside the SetProcessList()method itself.
For example, in case that you have deleted or added one or more process names of
that you want to be detected through the ProcessDetection method.

44.. int GetListSize()

This method will use the SetListSize method and it will return the size of the list.

It is used as the second parameter of ProcessDetection method.

55.. int ProcessDetection(string * arraymemlocation , int listsize)

This method is used in order to check through a list of popular process names of
debuggers and reversing tools if any of them is running.

Check methods above regarding the predefined list.

This method will return 1 if a debugger or a reversing tool from the predefined list
gets detected through it process name, 0 if no suspect process has been detected, -1 if
an error occurs while trying to obtain a snapshot of all running processes, and -2 if an
error occurs while trying to retrieve info about the first running process.

The A.R.F Project v1.1 11

CCllaassss:: MMoodduulleeDDeebbuuggggeerrDDeetteeccttiioonn

11)) ModuleDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

22)) string * SetModulesList()

This method will fill a dynamic array with a predefined list of some specific
modules/plugins of debuggers and reversing tools and it will return a pointer to it.

It is the first parameter of ModuleDetection method.

You may modify the list, but in case you do so, you must set the correct size in the
SetListSize method.

33)) void SetListSize()

This method sets the size of the list and it is used by GetListSize() method.

You should modify the size only in case that you have modified the size of the list
inside the SetModulesList()method itself.
For example, in case that you have deleted or added one or more modules/plugins
names that you want to be detected through the ModuleDetection method.

44)) int GetListSize()

This method will use the SetListSize method and it will return the size of the list.

It is used as the second parameter of ModuleDetection method.

55)) int ModuleDetection(string * arraymemlocation, int listsize)

The A.R.F Project v1.1 12

This method will take a list of all running processes and then for each process will go
through its loaded modules in order to detect a debugger or a reversing tool through
its own loaded modules and/or plugins.

Check methods above regarding the predefined list.

This method will return 1 if a debugger or a reversing tool gets detected through a
module name, 0 if no suspect module has been detected, -1 if an error occurs while
trying to obtain a snapshot of all running processes, and -2 if an error occurs while
trying to retrieve info about the first running process.

CCllaassss:: PPaarreennttPPrroocceessssDDeetteeccttiioonn

11.. ParentProcessDetection()

This method is the constructor used in order to create a new instance of the class.

22.. int CheckParentProcess()

This method will retrieve the parent process id of our process and then will verify that
this id corresponds to the process id of windows explorer. If it is not then it means that
probably our process is being debugged or it has been launched through a loader that
will attempt to modify our code on run-time in memory.

This method will return 1 in case the parent of our process is not windows explorer, 0
if the parent is windows explorer, -1 if an error occurs while trying to obtain a
snapshot of all running processes, and -2 if an error occurs while trying to retrieve
info about the first running process.

Note: This method should not be used in case you plan to design an
application that it will be launched from another one that you already know that
it is legitimate.
This method will trigger a “false alarm” while you debug the code in your IDE.

CCllaassss:: CCooddeeTTrraacceeTTiimmeeDDeetteeccttiioonn

The A.R.F Project v1.1 13

11.. CodeTraceTimeDetection()

This method is the constructor used in order to create a new instance of the class.

22.. DWORD StartExecutionTime()

This method is going to use the GetTickCount win API in order to retrieve the
number of milliseconds that have elapsed since the system was started and the result
is going to be stored for later.
It is used by the SetStartTime method in order to store the initial result.

This method returns the number of milliseconds that have elapsed since the system
was started.

33.. DWORD EndExecutionTime()

This method is going to use the GetTickCount win API in order to retrieve the
number of milliseconds that have elapsed since the system was started and the result
is going to be stored for later.
It is used by the SetEndTime method in order to store the initial result.

This method returns the number of milliseconds that have elapsed since the system
was started.

44.. void SetStartTime()

This method uses the StartExecutionTime method and stores the value returned by
it.

55.. void SetEndTime()

This method uses the EndExecutionTime method and stores the value returned by it.

66.. void SetTimeLimit()

The A.R.F Project v1.1 14

This method sets the time limit for execution of the code block that we want to 1000
ms.
You may change it to lower or to a higher value depending on your needs.

This method is used from the GetTimeLimit method.

77.. DWORD GetTimeLimit()

This method returns the value of the time limit by using the SetTimeLimit method.

This method is used by the IsCodeBeingTaced method.

88.. void SetTotalTime()

This method sets the total time that has elapsed during the execution of a specified
code block of our choice.
It is used by the GetTotalTime method.

99.. DWORD GetTotalTime()

This method returns the value of the total time that has elapsed during the execution
of a specified code block of our choice by using the GetTotalTime method.

This method is used by the IsCodeBeingTaced method.

1100.. bool IsCodeBeingTaced()

This method will use the GetTotalTime method in order to retrieve the total time
that has elapsed during the execution of a specified code block of our choice and then
it will retrieve the time limit that we have set by using the GetTimeLimit method.

This method returns true if the value returned by GetTotalTime method is greater
than the value returned by GetTimeLimit method which means that our code is being
traced, otherwise it returns false.

The A.R.F Project v1.1 15

Note: This method may trigger a “false alarm” while you debug the
code in your IDE.

CCllaassss:: HHaarrddwwaarreeBBrreeaakkPPooiinnttDDeetteeccttiioonn

11.. HardwareBreakPointDetection()

This method is the constructor used in order to create a new instance of the class.

22.. int HwdBreakPoint()

This method will use the win API OpenThread in order to obtain a valid handle with
the necessary access rights to the current thread the functions runs and then it will use
the GetThreadContext win API in order to check if any of the debug registers Dr0,
Dr1, Dr2, Dr3 is not equal to zero which means that one or more hardware
breakpoints have been set.

This method returns 1 if a hardware breakpoint is detected, 0 if no hardware
breakpoints are detected, -1 if an error has occurred while trying to obtain a valid
handle to the thread, and -2 if the GetThreadContext win API fails.

CCllaassss:: AAppiiBBrreeaakkPPooiinnttDDeetteeccttiioonn

11.. ApiBreakPointDetection()

This method is the constructor used in order to create a new instance of the class.

22.. int ApiBreakPoint(char * DLL, char * API)

This method is used in order to detect any software breakpoints at the entry point of
an API.
It uses the LoadLibrary and GetProcAddress win APIs in order to obtain a handle
to the dll of our choice in order to retrieve the virtual address of the specified API in
memory.

The A.R.F Project v1.1 16

It will then use a BYTE * pointer in order to check if in the first 5 bytes of the entry
point of the API there is a 0xCC byte which means that a software breakpoint has
been set there.

This method returns 1 if a software breakpoint has been detected, 0 if a software
breakpoint has not been detected, -1 if an error occurs while we try to obtain a valid
handle to the dll of our choice, and -2 if an error occurs while we try to retrieve the
virtual address of the selected API.

CCllaassss:: SSeehhDDbbggDDeetteeccttiioonn

11.. SehDbgDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool CloseHandleExcepDetection(HANDLE invalid)

In this method we are using CloseHandle win API by pushing and invalid
handle to it.
If there is no debugger attached to our process CloseHandle will just return an error
code and the execution will continue.
However, if a debugger is attached then an exception will be raised and execution will
be transferred inside our SEH.

33.. bool SingleStepExcepDetection()

In this method we trigger a single step exception by pushing the EFLAGS to the stack
and then setting the trap flag bit.
Finally, we restore them back with the trap flag bit set.
If a debugger is attached it will intercept the exception raised during the execution of
the next instruction, so execution will never reach our SEH.

Note: These methods may work or not depending on the configuration
of the debugger regarding exceptions.
For example, regarding the INVALID HANDLE exception in Olly Debugger, in
case you don’t pass the generated exception to the program, execution will never
reach our SEH, so the method will return false.

The A.R.F Project v1.1 17

However, if you have instructed the debugger to automatically ignore this
specific exception or you manually pass the exception to the program, then the
execution will be transferred to our SEH and the method will return true.
Of course this is just for detection purposes, but think what it can happen in this
case if the code inside your SEH creates some havoc to mislead the attacker.

CCllaassss:: AAnnttiiAAttttaacchh

11.. AntiAttach()

This method is the constructor used in order to create a new instance of the class.

22.. int AntiAttachSet()

This method can be used in order to forbid to a debugger to attach to our running
process.
More specifically, since it is known that each time a user mode debugger attaches to
our process, there will be a call to the APIs DebugUiRemoreBreakin and
DbgBreakPoint (exported by the ntdll) from our process, we can alter these 2
functions by changing their entry point with a RET instruction in order to forbid to
the debugger to successfully attach to our process.

This method uses the OpenProcess win API in order to obtain a valid handle with
read/write access rights to our process and the LoadLibrary and GetProcAddress in
order to retrieve the virtual addresses of the 2 APIs mentioned before.
It will then use the WriteProcessMemory win API in order to write a RET
instruction (0xC3) at the beginning of the 2 APIs mentioned before so that they will
not be able to be used and the debugger will not manage to attach to our process.

This method returns 1 if the antiattach has been se successfully, -1 if an error occurs
while trying to obtain a handle to our process, -2 if an error occurs while trying to
obtain a handle to the ntdll, -3 if an error occurs while we try to retrieve the address of
the 2 win APIs we are interested to, and -4 if an error occurs while we try to write a
RET instruction to the entrypoint of both APIs.

33.. void AntiAttachSelfDebug()

This method will create a child process and it will debug it on run time.

The A.R.F Project v1.1 18

The execution of the code will take place on the child process in which we will not be
able to attach a user mode debugger because it will be already being debugged by its
parent process.
This is a more sophisticated anti-attach method and anti-debug method since the
normal execution of the does not take place in the process we are currently debugging,
but from the child process.

Note: In case you decide to use this anti-attach method keep in mind
that you should use it inside your main() function as the first thing to do, or after
calling the previous method discussed in order to protect also the parent from
attaching a debugger to it on run-time.
This method should not be used along with the following debugger detection
methods because since the child process from which the application will run it
will be debugged by the parent process, those methods will trigger a “false
alarm”:

i) bool DebuggerPresent()

ii) int RemoteDebuggerPresent()

iii) bool DebugString()

iv) int CheckParentProcess()

 v) bool CloseHandleExcepDetection(HANDLE invalid)

 vi) bool SingleStepExcepDetection()

However, you could use the rest of the methods before or after calling
AntiAttachSelfDebug() in order to detect the presence of a debugger.
Those that will be used before calling AntiAttachSelfDebug() method will run at
both parent and child processes.
Those that will be used after calling AntiAttachSelfDebug() will run only in the
child process.

TIP: You could use also the above methods with a little bit of
imagination. In other words, since you know that your protected program will
constantly be debugged by its parent process, you could use those methods in the
opposite way after calling AntiAttachSelfDebug() so that if the child process is
not debugged, then our code it is probably under attack.

 IInniittiiaalliizzee aa nneeww oobbjjeecctt aanndd uussee tthhee aavvaaiillaabbllee mmeetthhooddss

§ DirectDebuggerDetection

The A.R.F Project v1.1 19

 i) bool DebuggerPresent()

 ii) int RemoteDebuggerPresent()

Include the DirectDebuggerDetection.h and add the
DirectDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

DirectDebuggerDetection * directdbg = new DirectDebuggerDetection();

Use the methods:

if(directdbg->DebuggerPresent())
{

 cout << endl << "Attached Debugger Detected!!!" << endl;
}

else{

 cout << endl << "No Attached Debugger Detected..." << endl;

 }

if(directdbg->RemoteDebuggerPresent() == 1)
{

 cout << endl << "Attached Debugger Detected!!!" << endl;
}

else if (directdbg->RemoteDebuggerPresent() == 0){

cout << endl << "No Attached Debugger Detected..." << endl;

}

The A.R.F Project v1.1 20

§ IndirectDebuggerDetection

 i) bool DebugString()

ii) int OpenServicesProcess()

Include the IndirectDebuggerDetection.h and add the
IndirectDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

IndirectDebuggerDetection * indirectdbg = new
IndirectDebuggerDetection();

Use the methods:

if(indirectdbg->DebugString())
{

cout << endl << "User-mode debugger through message to debugger has
been Detected!!!" << endl;

}

else{

 cout << endl << "User-mode debugger through message to debugger has
Not been Detected..." << endl;

}

if(indirectdbg->OpenServicesProcess()== 1)
{

 cout << endl << "Debugger Detected through OpenProcess to a system
process!!!" << endl;

}

else if(indirectdbg->OpenServicesProcess() == 0)

The A.R.F Project v1.1 21

{

 cout << endl << "Debugger Not Detected through OpenProcess to a
system process..." << endl;

}

§ WindowDebuggerDetection

 i) bool SpecificWindowNameDetection(string
 windowname)

 ii) bool SpecificWindowClassDetection(string classname)

 iii) void SetListSize()

 iv) int GetListSize()

 v) bool ListWindowClassDetection(string * arraymemlocation , int
 listsize)

Include the WindowDebuggerDetection.h and add the
WindowDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

WindowDebuggerDetection * windowdebug = new WindowDebuggerDetection();

Use the methods:

//Detect Olly Debugger example through window class name

if(windowdebug->SpecificWindowClassDetection("OLLYDBG"))
{

 cout << endl << "Specific Window of Debugger/Reversing Tool
Detected through class name!!!" << endl;

The A.R.F Project v1.1 22

}

else{

 cout << endl << "Specific Window of Debugger/Reversing Tool Not
Detected through class name..." << endl;
}

//Detect Olly Debugger example through window title

if(windowdebug->SpecificWindowNameDetection("OLLYDBG"))
{

 cout << endl << "Specific Window of Debugger/Reversing Tool
Detected through title name!!!" << endl;
}

else{

 cout << endl << "Specific Window of Debugger/Reversing Tool Not
Detected through title name..." << endl;
}

/*Detect a a debugger or a reversing tool from a predefined list
 of windows class names.
 Read the documentation above.*/

if(windowdebug->ListWindowClassDetection(windowdebug-
>SetReverseToolsList(),windowdebug->GetListSize()))
{

cout << endl << "A Window of Debugger/Reversing Tool has been
Detected through its class name from the predefined list!!!" << endl;

}

else{

cout << endl << "A Window of Debugger/Reversing Tool has NOT been
Detected through its class name from the predefined list..." << endl;

}

The A.R.F Project v1.1 23

§ ProcessDebuggerDetection

 i) string * SetProcessList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ProcessListDetection(string * arraymemlocation , int
 listsize)

Include the ProcessDebuggerDetection.h and add the
ProcessDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ProcessDebuggerDetection * procdbg = new ProcessDebuggerDetection();

Use the methods:

if(procdbg->ProcessListDetection(procdbg->SetProcessList(), procdbg-
>GetListSize()) == 1)
{

 cout << endl << "Debugger/Reversing Tool running process
Detected from our process name list!!!" << endl;
}

else if(procdbg->ProcessListDetection(procdbg->SetProcessList(),
procdbg->GetListSize()) == 0)
{
 cout << endl << "Debugger/Reversing Tool running process Not
Detected from our process name list..." << endl;

}

The A.R.F Project v1.1 24

§ ModuleDebuggerDetection

 i) string * SetModulesList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ModuleDetection(string * arraymemlocation, int listsize)

Include the ModuleDebuggerDetection.h and add the
ModuleDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ModuleDebuggerDetection * moddbg = new ModuleDebuggerDetection();

Use the methods:

if(moddbg->ModuleDetection(moddbg->SetModulesList(), moddbg->GetListSize()) ==
1)
{

 cout << endl << "Debugger/Reversing tool detected through loaded
modules!!!" << endl;

}

else if(moddbg->ModuleDetection(moddbg->SetModulesList(), moddbg-
>GetListSize()) == 0)

{

 cout << endl << "No Debugger/Reversing tool detected through loaded
modules...." << endl;

}

The A.R.F Project v1.1 25

§ ParentProcessDetection

 i) int CheckParentProcess()

Include the ParentProcessDetection.h and add the
ParentProcessDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ParentProcessDetection * ppdetect = new ParentProcessDetection();

Use the methods:

if(ppdetect->CheckParentProcess() == 1)
{

cout << endl << "Debugger/Reversing Tool Detected through parent
process id check!!!" << endl;

}

else if(ppdetect->CheckParentProcess() == 0)
{

cout << endl << "No Debugger/Reversing Tool Detected through parent
process id check..." << endl;

}

§ CodeTraceTimeDetection

 i) DWORD StartExecutionTime()

 ii) DWORD EndExecutionTime()

 iii) DWORD GetTimeLimit()

The A.R.F Project v1.1 26

 iv) DWORD GetTotalTime()

 v) void SetStartTime()

 vi) void SetEndTime()

 vii) void SetTimeLimit()

 viii) void SetTotalTime()

 ix) bool IsCodeBeingTaced()

Include the CodeTraceTimeDetection.h and add the
CodeTraceTimeDetectionFunc.cpp to your project.

Initialize a new instance of the class:

CodeTraceTimeDetection * tracetime = new CodeTraceTimeDetection();

Use the methods:

tracetime->SetStartTime();/* get the time before the execution of the
code block*/

/*the code block you want to check the execution time required goes
here*/

tracetime ->SetEndTime();/* get the time after the code block has
been executed*/

//perform the check

if(tracetime->IsCodeBeingTaced())
{

 cout << endl << "Debugger Detected through execution time
check!!!" << endl;

}

else{

 cout << endl << "Debugger Not Detected through execution time
check..." << endl;

}

The A.R.F Project v1.1 27

§ HardwareBreakPointDetection

 i) int HwdBreakPoint()

Include the HardwareBreakPointDetection.h and add the
HardwareBreakPointDetectionFunc.cpp to your project.

Initialize a new instance of the class:

HardwareBreakPointDetection * hwdbp = new
HardwareBreakPointDetection();

Use the methods:

if(hwdbp->HwdBreakPoint()==1)
{

 cout << endl << "Hardware Breakpoint has been Detected!!!" <<
endl;

}

else if(hwdbp->HwdBreakPoint()==0)
{

 cout << endl << "Hardware Breakpoint has Not been Detected..."
<< endl;

}

The A.R.F Project v1.1 28

§ ApiBreakPointDetection

 i) int ApiBreakPoint(char * DLL, char * API)

Include the ApiBreakPointDetection.h and add the
ApiBreakPointDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ApiBreakPointDetection * apibp = new ApiBreakPointDetection();

Use the methods:

/* Example: Check for software breakpoint at the entrypoint of
OutputDebugStringA*/

if(apibp->ApiBreakPoint("kernel32","OutputDebugStringA") == 1)
{

 cout << endl << "Breapoint Detected on protected API!!!" <<
endl;

}

else if(apibp->ApiBreakPoint("kernel32","OutputDebugStringA") == 0){

 cout << endl << "Breapoint Not Detected on protected API..."
<< endl;

}

§ SehDbgDetection

i) bool CloseHandleExcepDetection(HANDLE invalid)

ii) bool SingleStepExcepDetection()

The A.R.F Project v1.1 29

Include the SehDebuggerDetection.h and add the
SehDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

SehDbgDetection * sehdbgdetect = new SehDbgDetection();

Use the methods:

if(sehdbgdetect->CloseHandleExcepDetection((HANDLE)0x90909090)) //push an
invalid handle
{

 cout << endl << "Debugger detected through CloseHandle() exception!!!"
<< endl;
}

else
{

 cout << endl << "Debugger Not detected through CloseHandle()
exception..." << endl;

}

if(sehdbgdetect->SingleStepExcepDetection())
{

 cout << endl << "Debugger detected through Sigle Step exception!!!" << endl;

}

else{

 cout << endl << "Debugger NOT detected through Single Step exception..."
<< endl;

}

The A.R.F Project v1.1 30

§ AntiAttach

 i) int AntiAttachSet()

 ii) void AntiAttachSelfDebug()

Include the AntiAttach.h and add the AntiAttachFunc.cpp to your project.

Initialize a new instance of the class:

AntiAttach * antiattach = new AntiAttach();

Use the methods:

if(antiattach->AntiAttachSet() == 1)
{

cout << endl << "Parent Anti-Attach has been set succesfully!!!" <<
endl;

}

else{

 cout << endl << "There was an error while setting the Anti-
Attach..." << endl;

}

antiattach->AntiAttachSelfDebug();/*see the documentation for more
info*/

cout << endl << "SelfDebug Anti-Attach has been applied!!!" << endl;

The A.R.F Project v1.1 31

Final Note: Most of the methods will return an error code in case
something goes wrong in the implementation.
Check the documentation about the return values of each function and the
corresponding possible error codes they may return.
Don’t forget that the purpose of the detection methods is just to detect and not to
provide countermeasures.
It is always up to you to decide what it should happen if a debugger is detected
by using any of the detection methods provided here.

Always remember that imagination is the best anti-reversing method!

